3.225 \(\int \frac{\cos ^{\frac{3}{2}}(c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=128 \[ -\frac{\sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{\sin (c+d x) \sqrt{\cos (c+d x)}}{d \sqrt{a \cos (c+d x)+a}}+\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d} \]

[Out]

-(ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]/(Sqrt[a]*d)) + (Sqrt[2]*ArcTan[(Sqrt[a]*Sin[c + d*x]
)/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*S
qrt[a + a*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.279974, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {2778, 2982, 2782, 205, 2774, 216} \[ -\frac{\sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{\sin (c+d x) \sqrt{\cos (c+d x)}}{d \sqrt{a \cos (c+d x)+a}}+\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

-(ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]/(Sqrt[a]*d)) + (Sqrt[2]*ArcTan[(Sqrt[a]*Sin[c + d*x]
)/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*S
qrt[a + a*Cos[c + d*x]])

Rule 2778

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-2*d*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n - 1))/(f*(2*n - 1)*Sqrt[a + b*Sin[e + f*x]]), x] - Dist[1/(b*(2*n
- 1)), Int[((c + d*Sin[e + f*x])^(n - 2)*Simp[a*c*d - b*(2*d^2*(n - 1) + c^2*(2*n - 1)) + d*(a*d - b*c*(4*n -
3))*Sin[e + f*x], x])/Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 2982

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A*b - a*B)/b, Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*
x]]), x], x] + Dist[B/b, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d, e
, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{3}{2}}(c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx &=\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)}}-\frac{\int \frac{-a+a \cos (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{2 a}\\ &=\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)}}-\frac{\int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx}{2 a}+\int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx\\ &=\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{a d}-\frac{(2 a) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=-\frac{\sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{\sqrt{a} d}+\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{\sqrt{a} d}+\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 1.2273, size = 227, normalized size = 1.77 \[ -\frac{i e^{-\frac{1}{2} i (c+d x)} \cos \left (\frac{1}{2} (c+d x)\right ) \sqrt{\cos (c+d x)} \left (-\sqrt{2} e^{i (c+d x)} \sinh ^{-1}\left (e^{i (c+d x)}\right )-4 e^{i (c+d x)} \tanh ^{-1}\left (\frac{1-e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )+\sqrt{2} \left (\sqrt{1+e^{2 i (c+d x)}} \left (-1+e^{i (c+d x)}\right )+e^{i (c+d x)} \tanh ^{-1}\left (\sqrt{1+e^{2 i (c+d x)}}\right )\right )\right )}{\sqrt{2} d \sqrt{1+e^{2 i (c+d x)}} \sqrt{a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

((-I)*(-(Sqrt[2]*E^(I*(c + d*x))*ArcSinh[E^(I*(c + d*x))]) - 4*E^(I*(c + d*x))*ArcTanh[(1 - E^(I*(c + d*x)))/(
Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] + Sqrt[2]*((-1 + E^(I*(c + d*x)))*Sqrt[1 + E^((2*I)*(c + d*x))] + E^(I
*(c + d*x))*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x))]]))*Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]])/(Sqrt[2]*d*E^((I/2)*
(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.405, size = 159, normalized size = 1.2 \begin{align*}{\frac{\sqrt{2} \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2}}{2\,da \left ( \sin \left ( dx+c \right ) \right ) ^{4}} \left ( \cos \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( \sin \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\sqrt{2}-\sqrt{2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) -2\,\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^(1/2),x)

[Out]

1/2/d*2^(1/2)/a*cos(d*x+c)^(3/2)*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))^2*(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*2^(1/2)-2^(1/2)*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c))-2*arcsin((-1+cos(d
*x+c))/sin(d*x+c)))/(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)/sin(d*x+c)^4

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{3}{2}}}{\sqrt{a \cos \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(3/2)/sqrt(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [A]  time = 2.39317, size = 420, normalized size = 3.28 \begin{align*} \frac{\sqrt{a}{\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - \frac{\sqrt{2}{\left (a \cos \left (d x + c\right ) + a\right )} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right )}{\sqrt{a}} + \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a d \cos \left (d x + c\right ) + a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(sqrt(a)*(cos(d*x + c) + 1)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - sqrt(
2)*(a*cos(d*x + c) + a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c)))/sqr
t(a) + sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos ^{\frac{3}{2}}{\left (c + d x \right )}}{\sqrt{a \left (\cos{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)**(3/2)/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{3}{2}}}{\sqrt{a \cos \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(3/2)/sqrt(a*cos(d*x + c) + a), x)